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I. Document heading 

 

Project title:   Manufacturing Education for a Sustainable fourth Industrial Revolution 

Output number:  O1 

Leading organization:  Loughborough University (LBORO) 

Output title:   Mapping and selection of Industry 4.0 contributions eligible for education 

Authors:  Loughborough University with input from the entire consortium 
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II. Intellectual Output 1 as seen in the proposal 

This section presents the first intellectual output as detailed in the proposal. 

A. Output description 

This activity is the first step in an attempt to systematize the body of knowledge produced in the 

domain of the fourth industrial revolution with the aim of selecting suitable concepts to be introduced 

in undergraduate engineering education. Particular attention will be devoted to the contribution that 

positively impact the UN agenda for Sustainable development objectives. The following list introduces 

some of the envisaged topics and their distribution in relation to partners’ expertise: 

⮚ Virtual reality, augmented reality (Pisa University), 

⮚ Additive manufacturing (POLITO - PISA), 

⮚ Autonomous Robot and Human robot cooperation (POLITO) 

⮚ Sustainable Business Models: Shared Economy and Circular Economy (KTH) 

⮚ Multi Agent based distributed Control (Uninova) 

⮚ Machine Learning (LBORO) 

⮚ Big data (PRZ) 

⮚ Blockchain 

The results of the effort will be presented through a public research diary document that presents all 

the eligible innovative topics as well at the rationale for including them in undergraduate education. 

This is expected to be a living document that can be freely used by universities beyond the partnership 

as reference to update their undergraduate engineering profile 

B. Division of work 

LBORO will lead the effort of reviewing the leading edge literature in the suggested domain. Each 

partner will contribute in relation to their specific technical expertise.  

Task 1.1:  Allocation of subdomain. The first step will be allocation of sub - domain according to partner 

expertise. 

Task 1.2: Literature analysis. Each partner will adopt a strategy that best suits the given topic and will 

hold highly important the dimension of sustainability as described in UN Sustainable development 

agenda Traditional literature analysis can be integrated with review of practices from universities 

available in different MOOC platforms or even industrial partners. In detail each partner will identify 

and describe also current applications in industry related to their focal technology. 

Task 1.3: Synchronization and research diary. A weekly online pulse meeting will be organized to 

update the consortium on the single efforts and iteratively compile the research diary resulting from 

the effort. 
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III. Intellectual Output 1 implementation 

A. Introduction  

The fourth industrial revolution, or so-called Industry 4.0 (I4.0), is emerging from the introduction of 

several advancements in a way that substantially and rapidly transforms the design, manufacturing, 

operation, and services related to manufacturing systems or products (Davies 2015). One important 

dimension of this transformation is that for the first-time technology is not seen simply as a new 

means to promote economic growth, but also as a pivotal element that will enable a more sustainable 

future. In the literature, the sustainabile implications of the I4.0 are investigated by several studies 

including implication on the flow of raw materials, energy, products, waste, assets, information, and 

supply chain (Bonilla et al. 2018; Dossou 2018; Pizzi et al. 2020; Shrouf, Ordieres, and Miragliotta 

2014). However, the focus of these works is on some technological or sustainability aspects and there 

is a need to investigate these implications systematically and in a more comprehensive view. 

In 2015, the United Nation (UN) adopted a 2030 Agenda for Sustainable Development, which intended 

to guide the global economy considering social equality and ecological boundaries (UN Statistical 

Commission 2017). The agenda composes of 17 Sustainable Development Goals (SDG) shown in Figure 

1. The goals are supported by 168 targets and 330 indicators, which are detailed on the UN website 

(https://sdgs.un.org/ (accessed on February 25, 2021)). The 193 member states of the UN have 

committed to implement these ambitious goals by 2030. Since 2015, growing research dedicated to 

investigate different SDGs aspects, including indicators’ assessments (Hák, Janoušková, and Moldan 

2016), goals integrations (Stafford-Smith et al. 2017), energy-related targets (Fuso Nerini et al. 2018), 

soils and soil science impacts (Stafford-Smith et al. 2017), Artificial Intelligent (AI) impact (Khamis et 

al. 2019b, 2019a; Vinuesa et al. 2020), bibliometric investigation of research in business and 

management field on the goals (Pizzi et al. 2020), and whether the goals focus is on the poor and 

ecological concerns or on economic growth (Gupta and Vegelin 2016). 

 
Figure 1. United Nations Sustainable Development Goals. 
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I4.0 technologies have a significant impact on the achievement of the SDGs. This influence is explicitly 

stated in the 8 targets of SDG9; industry, innovation, and infrastructure, and can be implicitly deduced 

from the majority of the other 161 targets. As the SDGs aim to provide a blueprint for peace and 

prosperity for humanity and the earth, the influences of the I4.0 technologies are not equal on all 

these goals. While the influence is significant and straightforward for some goals, it is minor and 

indirect on others. Additionally, not all the I4.0 technologies contribute positively toward the 

achievement of the SDGs, where the implications of a few I4.0 technologies contradict with some 

SDGs targets (Bonilla et al. 2018). Understanding the complex influence of the I4.0 technologies on 

the SDGs allows researchers and educators to better consult policymakers, in order to think 

systematically about exploiting new technologies toward the achievement of the 2030 UN Agenda, 

including how to gear some of these technologies toward sustainability. To date, the effects of I4.0 

technologies on the SDGs has not yet been systematically investigated to bridge the gap between 

policy and technology development. 

Enhancing the awareness of how I4.0 technology development impacts the SDGs is one of the most 

powerful tools to help future engineers to work towards a sustainable world. To do so, the first step 

is to quantify the sustainable influence of the I4.0 technologies by mapping these technologies to the 

SDGs, which is conducted in the first state of the project. 

I4.0 is enabled by a collection of technologies across a variety of fields related to industry (Gilchrist 

2016). These different fields span from computer science and communication, into robotics and 

additive manufacturing. In the literature, I4.0 technologies have been classified at a higher level of 

granularity such as Internet of Thing (IoT), Cloud Computing (CC), and Virtual Reality (VR) (Alcácer and 

Cruz-machado 2019; Saucedo-Martínez et al. 2018). Indeed, each of these higher-level technology 

areas is a combination of a set of technologies. This high level of abstraction makes it difficult to study 

the influence of specific technology development on the SDGs. Hence, there is a need to define I4.0 

technologies at a lower level of granularity beyond currently available classifications. To address this, 

we first start by prepossessing a new break down of the high level I4.0 enablers into technology 

elements.  

This reminder of this report presents the first formative attempt to: (i) identify and classify the 

elements of I4.0 enabling technologies, and (ii) map these I4.0 technologies into the SDGs. The effect 

of the I4.0 technologies on each goal is identified using a consensus-based quantitative assessment 

and enriched by a deep discussion of selected evidence. The aim of this work is to provide a foundation 

for systematic exploration of the sustainable influence of the I4.0 technologies to achieve the UN SDGs 

from the perspective of academic experts 

B. Method 

Figure 2 shows the methodology used to conduct the activities of the first intellectual output. This 

work is carried out by the MAESTRO consortium, led by LBORO team. The work is carried out in two 

main tasks: (i) identify and define the I4.0 technologies and (ii) map and discuss the effect of these 

technologies on the SDGs. The following two subsections explain the method of tackling these two 

activities, respectively.  
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(a) Identifying I4.0 Technologies 

The I4.0 realization and implementation are based on several key technologies from interdisciplinary 

areas. In total, nine key enabling technologies are described in the literature. These nine enablers are 

adapted in many research articles, such as in (Alcácer and Cruz-machado 2019; Gilchrist 2016; 

Saucedo-Martínez et al. 2018), and also reported by publications of world consultant bodies such as 

(MicKensy 2020). This study builds on these recognized classifications. These technologies are, also, 

called pillars or building blocks of I4.0. In this article, they will be called Enablers due the semantic 

meaning of this word as these technologies make the realization of I4.0 possible rather than 

supporting its existence. The E letter will be used along with the number of the enabler to denote to 

specific enablers (i.e., E1 and E2).  
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Figure 2. Intellectual Output 1 implementation flowchart. 

By studying the classification of I4.0 technologies, it was found that the classification of the I4.0 

enabling technologies into nine enablers is at a high granularity level, where each enabler represents 

a collection of several enabling technologies. Therefore, the enablers on their own are not sufficient 

to understand and investigate the effect of I4.0 on the SDGs. A lower level of granularity for these 

enabling technologies is required as the first step to achieving a meaningful mapping. In the remainder 

of this report, these sub-enablers are called technology elements and denoted by adding number and 

dot after the enabler notation (i.e., E1.1 and E1.2). 

To identify the I4.0 technology elements, each group of experts was assigned to be responsible for 

one or two enablers during the identification process. The assignment was based on the expertise of 

the groups on the enabled technologies. The identification process is carried out in four steps: (i) 
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identification, (ii) reviewing and discussion, (iii) updating, and (iv) approving (cf. Figure 2). In the first 

step, the responsible group identified the technology elements for the enabler(s) they are responsible 

for. 

The identified elements were then reviewed and discussed by the seven groups in the second step 

individually and in a team discussion. After that, each group commented on the elements identified 

by the other groups and then, the MAESTRO team met to discuss these elements. In the third step, 

the responsible group refined the elements according to the received comments and submitted the 

final list of elements for the approval in the fourth step. The consensus list of elements is discussed in 

detail in Section V.A. 

(b) Mapping Method  

After identifying the I4.0 technology elements, mapping the influence of these elements to the SDGs 

is the second task. The mapping started by developing an effective quantitative measure to assess 

such a complicated influence. The measure is designed to reflect the effect nature of the I4.0 

technology elements on the SDGs, which can be direct (strong), indirect (weak), or no influence. Direct 

or strong influence is when the technology specifically contributes and touches the SDG targets, such 

as the effect of the big data and analytics on the sustainable industry, innovation, and infrastructure 

(SDG9), which strongly contribute to optimize its performance and outputs by intelligent decision 

making. On the other hand, an indirect or weak influence is when the technology does not contribute 

or touch the SDG targets, but it has a direct influence on another element, which has a direct influence 

on the SDG targets. An example of such a non-straightforward influence is the effect of cybersecurity 

on SDG9. Cybersecurity does not contribute directly to improve the sustainability of the goal targets, 

but it is a crucial enabler for other I4.0 technology (i.e., the big data and analytics), which have a direct 

influence on the goal. No influence is when the technology neither directly nor indirectly influences 

the goal.  

Another important aspect of the measure is to reflect the direction of the influence toward the 

achievements of the SDGs either positive or negative. Not all the I4.0 technology elements contribute 

positively to all the SDGs achievements (Bonilla et al. 2018), where some elements influence positively 

on some SDGs, and at the same time, negatively on other SDGs. A good example of such a conflict 

influence is the contribution of autonomous robots and automation to SDG9 and reduced inequality 

(SDG10), affecting positively on the former and negatively on the latter. The autonomous robots and 

automation plummet the demand of human workforce, especially low skill workers, causing a 

decrease in their wages, and an increase in income inequalities (Zhang 2019). Considering all the 

aforementioned aspects, a quantitative measure is developed to have five levels: (3)—strong positive 

influence; (1)—weak positive influence; (0)—no influence; (−1)—weak negative influence; (−3)—

strong negative influence.  

Using this scoring measure, the mapping task was carried out by the seven groups individually and 

blindly. The mapping process was carried out in three steps: (i) mapping, (ii) aggregating and analyzing, 

and (iii) discussing (cf. Figure 2). In the first step, experts from the same group met to score the 

influence of the full technology elements list to all the 17 SDGs. Consensus scores were elicited based 

on the opinions of experts. The outcomes of this step were seven mapping files, which then 

aggregated and analyzed in the second step. The average values of the seven scores and the standard 

deviations were calculated, providing more rigorous and credential scores. The full result of the 
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mapping is reported in the Supplementary (Mabkhot et al. 2021b). In the final step, the MAESTRO 

teams were met to discuss and interpret the results, which are presented in Section V.B.  

IV. Intellectual Output 1 in the context of the Project 

 

V. Results of Intellectual Output 1 

The result is presented in two sections and concluded in the third subsection. The first section presents 

the result of identifying and classifying the technology elements of the I4.0. The subsection defines 

the technological elements and highlights the foreseeable challenges for each element. The second 

subsection presents the mapping result and intensively discusses the experts’ opinions and various 

supporting arguments. The last subsection summarizes the results and the conclusions. The result is 

published in a research article and can be found in (Mabkhot et al. 2021a). 

A. Industry 4.0 Enabling Technologies 

As explained in the method section, the groups of experts (the MAESTRO team) have collaborated to 

identify and define these elements according to the growing I4.0 literature. The consensus list of 

elements is presented in Figure 3 and will be discussed in the following sub-sections. 

E1. Industrial Internet of Things 

Internet of Things (IoT) semantically is the connection of two words “internet” and “things”. The 

“internet” means the networks that provide the connectivity of “thing”, which refers to a person, a 

physical object or logical agent. The IoT can be defined simply as “IoT allows people and things to be 

connected anytime, anyplace, with anything and anyone, ideally using any path/network and any 

service” (Sezer, Dogdu, and Ozbayoglu 2018). Although the concepts of IoT exists decades before the 

I4.0 initiative, an Industrial Internet of Things (IIoT) is introduced to leverage and realize the IoT in the 

context of the I4.0 revolution. To achieve the functionality of IIoT enabler (E1), six technology elements 

are identified (E1.1 to E1.6): 

 

 O1 

 Mapping of the Ind 4.0 enabling technology (E) 
Impact of the technology on the UN SDGs 

 O2 

 Selection of promising E to include in engineering curricula with enphasis on 
SDG 

Suggestion of educational unit to develop 

 O3 
 Additional Input C1: workshop on Constructive Alignment 

Formulation of  Educational Units following CA based proposed method 

 O4 

 Implementation of the Educational Unit 

Evaluation and improvement 

 O5 

 Final release of Educational Unit 

Teaching and learning package for sharing the educational units as result of C2 
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Industry 4.0 
Technologies

 
Figure 3. I4.0 enablers and elements technologies. 

E1.1.  General identification: General identification is the explicit designation of all the 

entities within the IIoT network, where entities can be internal in the system or external that 

are related to internal entities. Identification technology focuses on two main processes: 

naming, which refers to assign a specific name to the entity (Liu, Yang, and Liu 2014), and 

addressing, which specifies the entity unique address (Uddin and Akbar 2006). The key 

challenge of identification in IIoT is the applicability of the technology in heterogeneous 

platforms or networks, which facilitates the connection between industrial things.  

E1.2. Ubiquitous sensing: Sensing is the process of detecting events or change in the status 

of an object or system and sending this information into IIoT to enable deducing effective 

reactive actions or efficient future decisions. A variety of sensing devices exist including 

Radio-frequency identifier (RFID)tags, smart sensors, and wearable sensing devices (Burhan 

et al. 2018). These devices will be ubiquitous in wider contexts in IIoT, giving a digital nervous 

system for the industry (Mabkhot et al. 2019). 

E1.3. Seamless and real-time communication: A seamless communication refers to sending 

or receiving information (i.e., message, files) between heterogeneous devices via any IIoT 

network at any bandwidth or speed. The connection in IIoT networks supposed to be with 

zero latency and has an unlimited throughput (Shaikh et al. 2013). Many communication 
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technologies can be utilized in IIoT including RFID (Plessky 2009), Near-field communication 

(NFC) (Z. Cao et al. 2019), Bluetooth (Darroudi and Gomez 2017), Long-Term Evolution (LTE), 

and 5G Wi-Fi (Bajracharya et al. 2018). 

E1.4. Embedded and edge computation: Products, machines, and even tools will be 

equipped with embedded boards and systems designed to perform a specific function, and it 

will be supported by processing hubs or cores located close to the endpoints of data source 

or usage. IIoT systems rely widely on embedded and edge computation to address the 

limitation of centralized computation such as latency, bandwidth, data privacy, and 

autonomy (i-scoop 2020).  

E1.5. Service-Oriented Architecture (SOA): SOA refers to the availability of information or 

functions as services in the IIoT cloud, exerting ubiquitous services collaboration (Rayes et al. 

2018). Services usage and collaboration are offered in a context-aware manner, where the 

identity of the objects who request the service is accessed, aggregated, and processed, as 

well as any related information. Services are available on time to respond to requests without 

rigidity about time or location (Burhan et al. 2018).  

E1.6. Interoperable semantic-based communication: I4.0 devices are supplied by different 

manufacturers, connected to different domains, or use different communication protocols. 

This heterogeneity creates a lack of interoperability between these devices and means that 

achieving a flexible digitalization between such devices is a challenge. Semantic technology is 

the solution that enabling the interoperable and flexible communication between these 

seamless devices, as well as between human and artificial agents (Sampath Kumar et al. 

2019). Semantic web technologies offer a standardized representation of knowledge (i.e., 

RDF, RDF Schema, and OWL) and a semantic query language called SPARQL (Thuluva, Anicic, 

and Rudolph 2017).  

E2.  Big Data and Analytics 

The second enabler puts emphasis on data, information, and knowledge. One of the pillars of I4.0 

concerns devices that generate data. “Big Data (BD)” is defined as large sets of heterogeneous data, 

coming from various sources, having different formats, and flowing in real time (Ren et al. 2019). BD 

attributes are: volume—continuous data growth (Minelli, Chambers, and Dhiraj 2013); velocity—fast 

data processing; variety—data in various forms. Conventional analytical tools for analyzing industrial 

datasets are inappropriate because the analyst will not be able to capture the whole value of the data 

(Sharma and Shamkuwar 2019). Due to this, the term “analytics” is also crucial for I4.0. Analytics 

includes various methods for discovering meaningful patterns in data. It uses data science to support 

making right decisions (Bae et al. 2019). To achieve the functionality of BD and analytics enabler (E2), 

eight technological elements are identified (E2.1 to E2.8): 

E2.1. Sensors: Sensors are one of the most important data sources in the industry, e.g., 

sensors in industrial devices and machines recorded values of parameters of production 

processes, as well as sensors in medical healthcare, and in public utilities recording data on 

media consumption or failures. The variety of domains is a characteristic of BD sensing. 

Sensing is also associated with deploying sensor clouds, automation of data sensing, and 

ensuring sensors’ infrastructure scalability. In the context of BD, an important challenge is the 

creation of sensors networking and sensors cloud computing, which are needed to gain highly 

efficient BD services.  



MAESTRO  
 Manufacturing Education for a Sustainable  

fourth Industrial Revolution  
 
                                          

Project No 2019-1-SE01-KA203-060572 

- 14 - 

E2.2. Data collecting: Dealing with continuous data growth is crucial for collecting large 

amounts of data. The basis for collecting BD is clusters of servers (nodes) and Distributed File 

Systems (DFS). Computational nodes allow for distributed processing. It provides high 

scalability and high fault tolerance (Usha and Jenil 2014). Whereas DFS can handle hundreds 

of nodes in a cluster. It manages files on distributed nodes, reduces network congestion, and 

increases system performance. BD can also be collected in their native formats and uses flat 

architecture, thanks to “data lakes” (Miloslavskaya and Tolstoy 2016). 

E2.3. Data processing: Processing BD based on two functions: Map and Reduce, that are 

combined as “MapReduce”–programming model, which allows creating applications running 

simultaneously on many computers. Other concepts that enable parallel execution of 

applications and use thousands of nodes at one time are “YARN” and “Dryad” (Laxmi Lydia 

and Swarup 2015; Oussous et al. 2018). BD can generate data streams at extremely high 

speed, so it will not be feasible or cost effective to store whole datasets. Therefore, a real-

time processing of data streams is important challenge for modern data processing (Dinsmore 

and Dinsmore 2016). 

E2.4. Data querying: In the case of BD, it is important to support data processing due to 

converting high level queries into MapReduce tasks, reducing MapReduce complexity, and 

simplifying exploration in parallel, especially in massive datasets. These challenges are met, 

e.g., by high level scripting language “Pig Latin” or declarative language “JAQL”. However, the 

above mentioned issues that concerning data querying optimization are still open challenges 

(Beyer et al. 2011; Laxmi Lydia and Swarup 2015). 

E2.5. Data access: Technologies related to data access enable efficient data transfer 

between BD clusters of nodes and structured data stores (relational databases, enterprise 

data warehouses). Due to variety of BD sources, an integration of that data sources is a core 

challenge both for data collecting and data access. Other technologies provide in-memory 

data access that enable run applications many times faster, as well as support real-time 

processing, on-line machine learning, and continuous calculations (Lyko, Nitzschke, and 

Ngonga Ngomo 2016; Sakr 2016). 

E2.6. Data analytics: In total, four types of analytics have been defined: descriptive —

summarizing existing datasets in order to get insight into the past; diagnostic—determining 

why something happened in the past; predictive—using a model developed based on existing 

data to predict future data; prescriptive—using optimization methods to recommend a 

specific course of action. Despite the fact that listed types existed before the era of BD, they 

can also be used for large industrial datasets (Minelli et al. 2013). However, generating 

insights in a timely manner is still a core challenge for BD analytics. 

E2.7. Decision-making support: From the viewpoint of I4.0 and BD, machine learning, and 

deep learning can be crucial to support the decision-making process. They allow discovering 

information from large volumes of uncategorized data. This is confirmed by many real world 

applications, such as recommendation engines, recognition systems, autonomous control 

systems (Qiu et al. 2016), and decision support systems for reducing production costs (Paśko 

and Litwin 2019). Data mining methods are complemented by visualization that helps present 

the information more intuitively and efficiently (Oussous et al. 2018). 

E2.8. Data management techniques and methods: BD requires appropriate data 

management methods and techniques that will make it possible to: coordinate applications 

and nodes in clusters, replicate services to protect data and nodes from failures, and recover 

system automatically. Management tools also allow for making interface where developers 
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can view the system, create and manage user accounts, and monitor cluster health (Lublinsky, 

Smith, and Yakubovich 2013). Different enterprises may have their own transmission 

protocols, data storage procedures, data formats, etc. This can be a serious challenge that 

hinders the creation of a universal data management system. 

E3.  Cloud Computing 

Cloud computing (CC) is a model for enabling ubiquitous, convenient, on-demand network access to 

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or service 

provider interaction (Mell and Grance 2011). It provides a sharable approach in which the computing 

resources can be accessed from different platforms and locations, with low computing load at the 

front end. Even though I4.0 has high requirements of Information and Communications Technology 

(ICT) capabilities of the stakeholders, the local factories, and companies normally do not maintain 

sufficient knowledge and expertise for the latest technologies. Thus, CC provides the feasible solution 

to provide the computing resource in different terms, i.e., Software as a Service (SaaS), Platform as a 

Service (PaaS), and Infrastructure as a Service (IaaS). Eventually, the cloud users can distribute the 

Information technology IT tasks to the cloud provider based on their needs, to focus on the actual 

value-adding process in their core business. This section discusses the key technology elements of CC 

(E3.1–3.4). 

E3.1. Computing: CC technology is the delivery of computing resources and power from remote 

locations, which do not require high facility investments for the user. In the past years, many 

successful commercial CC solutions like Microsoft Azure (Microsoft 2012), Amazon web 

services (Amazon 2012), IBM Cloud (IBM 2020), Google compute engine (Google 2020), etc. 

Meanwhile, there are also open cloud platforms like Openstack (OpenStack. 2013), Apache 

CloudStack (Apache CloudStack. 2013), Apache Mesos (Apach 2020), and so forth. These 

platforms provide different options of the industry to facilitate the computing structure within 

a private, community or public domain. For cloud users, the challenge is to identify the proper 

computing solution that is suitable for the business and safety requirements. 

E3.2. Interoperability: Interoperability refers to the capability of different systems, components, or 

products to understand and work with each other. In practice, a feasible engineering system 

needs to guarantee the interoperability at different levels, i.e., semantic, syntax, database, 

hardware, protocol, system, etc. (ATHENA 2007; Sheth 1999). In an I4.0 scenario, multiple 

novel technologies must be able to communicate and work with each other (Wang et al. 

2018). 

E3.3. Servicelisation: (on the Cloud): cloud-based servicelisation is the delivery of the computing 

resources in terms of service. Service user can use and pay based on the exact amount of 

service that is needed, i.e., pay-as-you-go principle. In the past years, different approaches 

have been proposed to offer the engineering resource and capability on the cloud in terms of 

services (Tao et al. 2011; Zhang et al. 2014). Both the hardware and software are capable to 

be encapsulated in terms of scalable services, and provided in the cloud resource pool (Wang 

et al. 2016). 

E3.4. Cloud Manufacturing: based on the success of CC and servicelisation, the cloud concept is 

further extended to the manufacturing domain, thus forming cloud manufacturing 

technology. Cloud manufacturing refers to network access to a shared pool of configurable 

manufacturing resources (Li et al. 2010; Wang and Wang 2014; Xun 2012). In cloud 
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manufacturing, the manufacturing hardware and software can be servicelised and offered on 

the cloud to provide accessible and elastic manufacturing capabilities with a low initial 

investment for the users. 

E4. . Simulation 

Due to the complexity of I4.0 and the difficulties that are associated with the implementation and 

coordination of this concept, simulation can be helpful to facilitate the use of all components of such 

systems, e.g., robotics, IT, manufacturing, logistics. Simulation is a representation of operations that 

take place in the real world in a given function of time (Negahban and Smith 2014). Besides, the 

network connection of certain I4.0 components, their mutual optimization is important, which is 

increasingly performed using simulation to present optimal or nearly optimal solutions to the decision-

makers. This approach greatly reduces the waste of time for an experiment that would have to take 

place in the absence of simulation (Krishnamurthi and Kumar 2020). In total, three technology 

elements (E4.1 to E4.3) are identified for the simulation enabler (E4): 

E4.1. Product and processes: Product and processes simulation is crucial and provides the basis for 

simulating larger systems that creates I4.0. Simulation in this part includes Finite Element 

Analysis (FEA) (Van Dang, Dong, and Gross 2020), simulation of acoustics performance of the 

product (Kirkup 2019; Navarro and Escolano 2015) simulation of composites structures 

behavior and the progressive degradation (Bachmann, Hidalgo, and Bricout 2017; Zhang et al. 

2016) and fluid dynamics simulation (Buckingham et al. 2018) can be distinguished. One of 

process simulation challenges is the development of Computer Aided Manufacturing (CAM) 

to automate a manufacturing process (Guilardi et al. 2020). 

E4.2. Production lines, workstations, and internal logistics: The key role to create a virtual factory 

is to use Discrete Event Simulation (DES). According to (Rodič 2017), the virtual factory that 

also known as digital twin is an extended use of simulation not just in the design state and 

planning phase, but also in the entire lifecycle of manufactured products (Rosen et al. 2015). 

There is also a growing interest in implementing Virtual Reality (VR) to improve existing work 

procedures and factory layout planning (Turner et al. 2016).  

E4.3. Enterprise and its operational environment: Simulation allows for a better understanding of 

the dynamics of business complex systems, such as enterprises, supply chains, and networks. 

The main simulation approaches used in this area are system dynamics (SD), DES and agent-

based simulation (ABS). The DES is highly mature and applied in many fields across enterprises 

(Kaihara et al. 2017; Wang et al. 2015). Unlike SD and DES, ABS focuses on individual activities 

of system components (Yazan and Fraccascia 2020). These simulation techniques are often 

combined to enable simulating the work of the entire system of enterprises, which in fact a 

challenging in developing harmonized and reliable models (Rabelo et al. 2005). 

E5.  Augmented Reality 

Industry 4.0 emphasizes the use of ICT and aims to promote the enormous potential of virtualization 

and the exchange of information. Augmented Reality (AR) represents a perfect combination of the 

real world with the virtual one, making it possible to enhance human perception by superimposing a 

computer that generates information on the real-world environment. With technological 

development, it has become possible to solve critical problems by simulating, assisting, and improving 

production processes before they are carried out. By using mobile platforms, such as smartphones, 

tablets, and smart glasses, it is possible to add relevant information directly to the worker’s field of 
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vision, providing assistance in the performed tasks (Gorecky et al. 2014; Ong, Yuan, and Nee 2008). 

Overall, five elements technology related to AR have been identified (E5.1–E5.5): 

E5.1. Machine interaction: Through augmented reality devices, operator can perform complex 

actions and interact directly with machines. For example, in (Syberfeldt, Danielsson, and 

Gustavsson 2014), a system including augmented reality to operate a crane was studied, or in 

(Nee et al. 2012) for real-time programming of collaborative robots. 

E5.2. Human interaction: The possibility of interaction between human beings is improved. It is 

possible to collaborate in an immersive manner even if the collaborators are not present in 

the same place. Anticipation long ago (Billinghurst and Kato 2002) is now pervasive by fast 

internet and cheaper devices.  

E5.3. Training: AR is also an enabling technology from the point of view of teaching and learning 

new tasks. For example, it is possible to directly support the operator during his operations by 

providing him or her with detailed information on the assembly or maintenance procedures 

for machinery (De Crescenzio et al. 2011; Ong et al. 2008)  

E5.4. Communication: Using optical devices, it is possible to superimpose images, text, and symbols 

on the operator’s visual field to facilitate and improve communication and the perception of 

the surrounding environment (Dangelmaier et al. 2005; Ong et al. 2008).  

E5.5. Simulation: Augmented reality is a useful tool for design, as it enables the simulation of 

production processes before they are performed. Using completely immersive virtual 

environments, it is possible, for example, to design industrial plants in detail, or to program 

computer numerical control machines by virtualizing the production process. 

E6.  Additive Manufacturing 

Additive Manufacturing (AM) is the term used to refer to a group of production technologies that 

contrapose to traditional subtractive or mass-conserving manufacturing techniques (Calignano et al. 

2017). AM technologies are natively digital, since they were born after the advent of the personal 

computer, and their manufacturing workflow is based on the use and processing of digital data. The 

digital data stream flows from the virtual 3D model of the product through the completion of the build 

of the physical object. The opportunity of creating an infinite number of different shapes of (almost) 

any complexity, with one machine and without the use of any mold or die, makes mass customization 

economically viable (Minetola and Eyers 2017). AM has been identified as one of the key enabling 

technologies for I4.0 and the newest industrial revolution (Berman 2012). In the case of the AM 

enabler (E6), six key elements were identified as follows: 

E6.1. Processes for polymers: AM processes for polymers exploit different physical principles for 

the layer-wise fabrication of parts made of thermoplastic or thermosetting materials. 

Composite parts with a polymeric matrix can also be manufactured with short or continuous 

reinforcement fibers. In the I4.0 framework, the digital workflow and process allow to 

constantly monitor the state of part production. Sustainability is promoted by the optimal use 

of material with low production waste and no specific production tools. Process productivity 

and a wider material range are the challenges for the future development of these 

technologies. 

E6.2. Processes for metals: AM processes for metals include direct and indirect technologies. Direct 

processes include powder bed fusion (PBF) with laser or electron beam sources and directed 

energy deposition (DED), also known as cladding. Nowadays, the application of powder-bed 

fusion technologies is consolidated in many industrial sectors as an alternative to traditional 
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manufacturing for small production batches or single components (Atzeni et al. 2014). Indirect 

processes are based on binder jetting or material extrusion and involve post-processing 

operations including a final sintering phase to fabricate dense metal parts (Galati and Minetola 

2019). Process productivity and a wider material range are the future challenges for these 

technologies. 

E6.3. Processes for ceramics: AM techniques for ceramic materials are not widely spread because 

of the limited industrial interest that often comes from niche sectors. Although most of AM 

processes are characterized by small build volumes, this limitation is even more stringent in 

the case of ceramics (Zocca et al. 2015). Ceramics are mainly processed by laser powder bed 

fusion or by binder jetting, an indirect process that requires post-processing phases and 

sintering to get dense parts (Jan Deckers, Jef Vleugels 2014). Larger build volumes and 

productivity are the challenges for the future developments of AM processes for ceramics. 

E6.4. Materials: Raw materials for AM are supplied in the state of viscous liquid, powder or solid 

(pellets, filament, or wire) feedstock (Bourell et al. 2017). The variety of materials that can be 

processed by AM techniques is narrow if compared to that of traditional processes. However, 

R&D activities are continuously focused on developing new materials for AM, so the variety is 

constantly increasing. Optimal usage and exploitation of materials with lower production 

scraps are the potential benefits of AM (Ingarao and Priarone 2020). Better process reliability 

and operator knowledge are the challenges for future improvements within the sustainability 

framework. 

E6.5. Design for AM: The key success for AM adoption is to identify a specific benefit that can 

provide an added value to the AM product by enhancing its performance and functionality. 

AM achieves its full potential (even under the environmental perspective) when the 

component is re-designed for the AM technology and the main benefit of the improved 

product performance is capitalized upon during the use phase (Priarone and Ingarao 2017). 

The main challenge for this key element is the promotion and diffusion of this innovative way 

of designing and conceiving new products to be fabricated by AM technologies. 

E6.6. Software: Throughout the AM workflow, different software packages are generally employed. 

A 3D modeling package is used to define the virtual solid model of the product. Generative 

design or topology optimization are tools that compute the best material distribution within 

an assigned design volume while considering engineering constraints and loads (Liu et al. 

2018). A slicing software is used to generate the manufacturing path for each layer and to 

convert the path in the proprietary code or open ISO G-code to be sent to the AM machine. 

The main challenge for the software is to achieve a higher reliability in the simulation of AM 

processes for predicting part deformation and quality (Song et al. 2020). 

E7.  Horizontal and Vertical System Integration 

In I4.0, systems and system components should not only communicate, but also, integrate and build 

a collaborative environment to improve the product and related services throughout the whole 

lifecycle. This integration is in two directions: horizontal and vertical. The horizontal integration is in 

three domains: within the shop floor (i.e., machine to machine) (Y.-C. Lin et al. 2017)(COPADATA 

2020), within multiple production facilities (Diogo R. Ferreira 2013), and across the entire value 

creation network (Stock et al. 2018). The vertical integration is intra-company and focuses on the 

collaboration between different levels of the enterprise hierarchy from sensors to the company 

business level (Alcácer and Cruz-machado 2019). Overall, seven elements have been identified for this 

enabler. 
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E7.1. Reference Architecture: Integration needs common models and architectures to define a 

communication structure. To enable effective integration, a common language with signs, 

alphabets, vocabulary, syntax, grammar, semantics, and pragmatics cultures are essentials. 

When we are talking about vertical and horizontal integration reference architectures, such 

as the old CIM-OSA, PERA, GERAM, ISA-95 are those that immediately come to mind (Williams 

and Li 1999). The Reference Architecture Model Industrie 4.0 (RAMI 4.0) is very important and 

will be discussed in the next point. However, other models exist such as the Industrial Internet 

Reference Architecture (IIRA), and the Internet of Things Reference Architecture (IoT RA) (S.-

W. Lin et al. 2017). However, interoperability and security are open challenges for such 

reference architecture, especially in heterogeneous systems (Bader, Maleshkova, and 

Lohmann 2019).  

E7.2. RAMI 4.0: German ‘Platform I4.0’ developed a service-oriented architecture special for I4.0 

so-called RAMI 4.0 (Schweichhart 2020). It defines the domains of industry 4.0 represented in 

a three-dimensional model: Layers, Lifecycle and Value Stream, and Hierarchy Levels (Knoll, 

Reinhart, and Prüglmeier 2019). The layers represent various perspectives, including assets 

and hardware, data and communication, and functional description and business process. The 

Lifecycle and Value Stream cover the whole product lifecycle from the development stage into 

the end life (i.e., recycle and scrap). The third dimension describes the hierarchical levels in 

the I4.0 system, starting from the product and field devices through control devices and 

stations into the workstation and enterprises (Maiorki, Santos, and De Loures 2019).  

E7.3. Systems Integration: System integration is one of the major difficulties in traditional 

automation systems. Different interoperability technologies and standardize models were 

developed to tackle these issues. This technology includes Electronic Device Description, Filed 

Device Integration, OPCU UA, Gateway and Mediator, AutomationML and semantic 

standardization, such as eCl@ss (Bangemann et al. 2016). However, in the I4.0 environment, 

the integration problem is more complicated. I4.0 systems are intended to bring together sub-

systems (i.e., machines, robots, sensors) that could be heterogenous, supplied by different 

manufacturer and have different interfaces (Mabkhot et al. 2018). Different models represent 

data information, functions, and diverse interfaces are used to access data. These 

heterogeneities make adaptation and mediation between models a major challenge (Liao et 

al. 2017).  

E7.4. Digital Twins: Digital Twin (DT) is the effective tool to realize I4.0 smart manufacturing with 

dynamic modeling, real time simulation, and smart decision-making (Davis et al. 2012). DT 

reflects the physical status of the factory in a virtual space using Computer-Aided Design 

models in high fidelity. It provides real-time 2-way communication, various scenario 

simulation, and interactive decision-support (Deloitte 2017). DT is a hot topic in both 

academia and industry, and many aspects has a room for improvements including modular 

based DT, modeling consistency and accuracy, VR integration into DT, efficient mapping 

between virtual and real data (Lim, Zheng, and Chen 2020). 

E7.5. Cyber Physical System (CPS): CPS is a complex and multidimensional system that integrates 

the system physical resources into cyber world. CPS provides a real-time sensing, information 

and data feedback, dynamic control and more services through the collaboration and 

integration of communication, computing, and control (Liu and Xu 2017). The integration in 

CPS is in both the horizontal and vertical integrations, with more focus on the vertical direction 

(Tao et al. 2019). Towards the realization of CPS, a lot of effort is needed in many areas, 
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especially in modelling (i.e., CPS platform), models integration, verification and testing 

(Ribeiro, Rosa, and Barata 2012; Zhou, Liu, and Zhou 2015). 

E7.6. System of Systems (CPSs): CPSs are a collection of task-oriented or dedicated systems that 

pool their resources and capabilities together to create more complex systems, which offer 

more extended functionality and performance (Bangemann et al. 2016). CPSs become alive 

by exchanging information and capabilities between systems’ constituents in both virtual and 

the physical environments via interfaces in a service oriented manner (Liu and Xu 2017). 

Interfaces are the enabler for many functionalities of CPSs and, therefore, need detailed 

attention in terms of authentication and security, as well as in data sovereignty and 

ownerships (Bader et al. 2019). This intended system solidarity rises many challenges, 

especially in the horizontal direction such as integration and collaboration between CPSs 

(Zhou et al. 2015).  

E7.7. Collaborative Networks (CNs): Collaboration exists and is needed for almost all the enablers 

and technological elements of I4.0, either explicitly or implicitly. CNs are applied to many 

domains and supported by variety of collaboration forms, which ranges from industry dynamic 

structure to supply chain and extended services (Mezgár 2019). CNs can be a goal-oriented or 

long-term strategic network. While the former characterizes by an intense interaction among 

participants to reach a common goal, the latter characterizes as a strategic alliance to act as a 

source breeding environment for the former, aiming to provide supportive networks 

(Benaben et al. 2015). Research in CNs are directed towards human-machine and machine-

machine collaboration, development of collaboration platforms, enhancing resilience and 

sustainability, and building collaboration culture and awareness (Camarinha-Matos et al. 

2019).  

E8. . Autonomous Robots 

Autonomous robots (AR) “are intelligent machines capable of performing tasks in the world by 

themselves, without explicit human control” (Bekey n.d.). They are the core of the autonomous 

production, which is an important part of the Smart Factory initiative. Smart Factory is one of the 

fundamental concepts of Industry 4.0 (Lasi et al. 2014). To achieve the functionality of the 

Autonomous Robot enabler (E8), three technological elements are identified (E8.1 to E8.3): 

E8.1. Perception: The key element in the development of ARs is perception, which consists of data 

acquisition and consequent extraction of useful information about the environment in which 

ARs operate. Due to the increased requirements for the ARs related to I4.0, this element is 

getting more challenging. The most basic task that robots can do, is positioning themselves 

relatively to some reference point in the environment. This can be done using various 

technologies: 2D and 3D digital cameras (C. T. Cao, Do, and Lee 2019), GPS (Ross and Hoque 

2020), lidar (Sun et al. 2020), ultrasonic and infrared sensors (Adarsh et al. 2016), magnetic 

sensors, etc. In addition, with the development of the soft robotics [131], new sensing 

principles are emerging (Felt 2017). 

E8.2. Deliberation: In I4.0, there is an increasing need for flexible ARs that can be adapted to various 

tasks and interact to different situations, as well as integrated in any environment. In such a 

setting, the need for deliberation is highly expressed. Acting deliberately is related to the 

“actions that are motivated by some intended objectives and that are justified by sound 

reasoning with respect to these objectives” (Ingrand and Ghallab 2017). To act deliberately, 

the following functions are required (Ingrand and Ghallab 2017): planning, acting, observing, 
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monitoring, goal reasoning, and learning. Descriptive, operational, open environment models, 

model acquisition, model verification issues, integration of the observing function with other 

deliberation functions and integration, as well as architecture issues are all open challenges 

within this element (Ingrand and Ghallab 2017). 

E8.3. Autonomy: Autonomy in ARs is defined as “the extent to which a robot can sense the 

environment, plan based on that environment, and act upon that environment, with the 

intent of reaching some goal (either given to or created by the robot) without external 

control” (Beer, Fisk, and Rogers 2014). Artificial Intelligence is of enormous importance for 

this purpose (Kunze et al. 2018). However, striking the right balance between robot autonomy 

and human control is a core challenge, in both technical and ethical terms (Senft et al. 2019). 

An important concept related to autonomy is dependability—the “ability to deliver trusted 

services” (Avižienis et al. 2004)— which mainly focuses on fault management in terms of 

prevention, removal, forecasting, and tolerance (Guiochet, Machin, and Waeselynck 2017). 

E9. . Cybersecurity 

Cybersecurity is “the ability to protect or defend the use of cyberspace from cyber-attacks” (CNSS 

2010). The International Telecommunication Union reports, in its Global Cybersecurity Index 2018 (ITU 

2018), that 42% of the 193 member states do not have a national cybersecurity strategy. This is 

alarming since the performance of most of the I4.0 enablers strongly rely on the applied cybersecurity 

measures. As a result, cybersecurity represents one of the major hurdles for the adoption of IIoT 

(Thames and Schaefer 2017). In addition, “digital development without cybersecurity is 

unsustainable” (Morgus 2018). To achieve the functionality of the Cybersecurity enabler (E9), two 

technological elements are identified (E9.1 and E9.2): 

E9.1. Threat identification and detection: As the number and sophistication of cyber threats 

increases, security systems are being improved in detection capabilities (Jorquera Valero et 

al. 2020). In general, cyber threats can be of various kinds: malware, phishing and spear 

phishing, man-in-the-middle attacks, trojans, ransomware, denial or distributed denial of 

service attacks, attacks on IoT devices, data breaches, etc. All of these are related to Industry 

4.0 at various degrees and also ways of fighting them are quite diverse (Akatyev and James 

2019; Martinelli et al. 2018; Rodrigues et al. 2017; Thames and Schaefer 2017). These security 

threats are one of the biggest and ever-growing challenges for IIoT, and it is essential to 

substantially mitigate them for its success (Ahanger and Aljumah 2019). 

E9.2. Data loss prevention: Data Loss Protection (DLP) denotes a set of tools and processes used to 

ensure that sensitive data is not lost, misused, or accessed by unauthorized users. In the vision 

of I4.0 a lot of processes are taking place in clouds, which makes DLP and cybersecurity in 

general even more challenging. A potential technology that gets mentioned often in relation 

to DLP is blockchain technology (Gatteschi et al. 2018). It is a promising technology from 

various aspects (Asuquo et al. 2020): authentication, confidentiality, accountability and non-

repudiation, traceability, and revocation. 

B.  Mapping Result 

To help readers interpret this section and follow the discussion of the mapping result, Table 1 lists the 

SDGs and the corresponding abbreviations. The aggregated result of mapping the I4.0 enablers (E1–

E9) into the 17 SDGs is shown in Figure 4. From each group result, each individual enabler score is 

calculated by summing the values of the elements scores and dividing it by the number of enabler 
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elements and, then, the average of these calculated values is recorded in Figure 4. While the last row 

indicates the overall average influence of individual enabler on achieving the SDGs, the last column 

indicates the expected overall effect on individual SDG influenced by the nine enablers. In general, the 

I4.0 technological enablers are contributing positively towards achieving the sustainability goals as it 

can be deduced from the dominance of green color variants in Figure 4. 

The influences of the enablers on the SDGs lies between 1.49 and 0.54 scores, indicating the experts 

believe that the enablers contribution are between mild weak to mild strong positive effects. This is, 

also, noticeable from the homogeneity of colors in the last column in Figure 4. In contrast, the whole 

Figure 4shows a heterogeneity of colors, indicating the enablers differences in bestowing the SDGs. 

 

 

Table 1. Abbreviations of the UN Sustainability Development Goals. 
Abbreviation Sustainability Development Goals  Abbreviation  Sustainability Development Goals  

SDG1 No Poverty SDG10 Reduced Inequality 

SDG2 Zero Hunger SDG11 Sustainable Cities and Communities 

SDG3 Good Health and Well-being SDG12 
Responsible Consumption and 

Production 

SDG4 Quality Education SDG13 Climate Action 

SDG5 Gender Equality SDG14 Life Below Water 

SDG6 Clean Water and Sanitation SDG15 Life on Land 

SDG7 Affordable and Clean Energy SDG16 Peace, Justice and Strong Institutions 

SDG8 Decent Work and Economic Growth 

SDG17 Partnerships to achieve Goals 
SDG9 

Industry, Innovation, and 

Infrastructure 

E2: BD and analytics has the maximum overall effect on the SDGs at 1.49 score value. Indeed, this 

result is not surprising as decision making based on big data helps rigorously to achieve the SDGs. AM 

(E6) has the minimum influence at 0.54 score. This, in fact, noticeable as the AM row shows a strong 

positive influence only on industry, innovation, and infrastructure (SDG9) and either weak positive or 

no influence on the other SDGs. 
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Figure 4. Average scores of the enablers’ effect on the UN-SDGs. 

The experts believe that the influence on the SDGs will be significantly different from one goal to 

another as it can be deduced from the variant of colors in the last row in Figure 4. So far, the strongest 

influence is recorded for the industry, innovation, and infrastructure (SDG9) at 2.48. This is followed 

by three goals: sustainable cities and communities (SDG11), responsible consumption and production 

(SDG12), and good health and well-being (SDG3) at 1.49, 1.41, and 1.37, respectively. There is a 

significant gap between the gained score for SDG9 and the second influenced goal (SDG3) at around 

one score value. This substantial gap reflects the fact that the I4.0 revolution focuses on reforming 

and empowering the industrial sectors and the UN sustainable agenda covers, not only this specific 

sector, but all the global economy aspects, maintaining human and environmental sustainability. 

In contrast, the weakest influence is scored for reduced inequality (SDG10) at 0.32. Experts believe 

that I4.0 technologies will increase the income gap and so increase inequality. The gender equality 

(SDG5), peace and justice strong institutions (SDG16), and no poverty (SDG1) gained lowest scores 

after SDG10 at 0.35, 0.46, and 0.49, respectively. For these goals, experts think that the I4.0 

technologies itself does not have a significant effect on these goals, and it could be employed to 

contribute either positively or negatively toward achieving these goals. 

Looking at the scores of the individual cells in Figure 4, three scores are detectable and worth to 

discuss. Firstly, the maximum positive score is recorded for the influence of cloud computing (E2) to 

the industry, innovation, and infrastructure (SDG9) at 2.79. This value did not gain much consensus 

among the expert panel as deduced by a high standard deviation of 1.16 (cf. Figure 5). Secondly, a 

score of zero is recorded for the influence of AM enabler (E6) on both the peace and justice strong 

institutions (SDG16) and partnerships to achieve the goal (SDG17). It is worth to mention that these 

are the only cell that reach a strong consensus as concluded from the zero standard deviation (cf. 

Figure 5). Thirdly, the only negative score is recorded for the effect of the ARs (E8) on the reduced 

inequality (SDG10). This believe do not share a wide consensus among the experts as shown by the 

high standard deviation of 1.19. 
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Figure 5. Standard deviation of the enablers’ effect on the UN-SDGs. 

Figure 5 shows the Standard Deviation (SD) of the scores carried out by the seven groups. Overall, the 

SD values indicate that the expert’s panels share a consensus about the influences of enablers on the 

SDGs as deduced from around 55% of the scores have SD values less than one. These values are shown 

in the table in green and lime colors. This implication is supported by the values in the last row, which 

indicate the overall effect of enablers on individual SDG. In total, 13 SDGs have average SD values less 

than one and only four goals have SD values between 1.11 and 1.24. The average SD values in the last 

column, which point out the overall influence of each enabler, are indicating the same. Only BD and 

analytics (E2) and ARs (E8) have average SD values greater than one at 1.01 and 1.13, respectively.  

The two most controversial individuals’ scores are recorded for the influence of ARs (E8) and AM (E6) 

on decent work and economic growth (SDG8) at 2.1 and 1.51 SD, respectively. The 45% of scores that 

have SD values greater than one, which to some extent, indicates disagreement among the expert 

panels about these influences. This discrepancy reflects the diversity of engineering disciplines in the 

panels and the academic perspective in the seven countries, which to somehow manifest the overall 

perspectives in these countries.  

E1.  Industrial Internet of Things 

The result of mapping the IIoT elements (E1.1–E1.6) into the sustainability goals is shown in Figure 6, 

which shows the average scores of the IIoT technology elements provided by the seven groups. In 

general, the IIoT technology elements are contributing positively towards achieving the sustainability 

goals as it can be concluded from the dominance of green color variants in Figure 6. This positive 

influence is expected as the IIoT empowers the outputs of the industrial sector that has a substantial 

impact on achieving most of the sustainability goals.  
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Figure 6. Average scores of the effect of IoT elements on the UN-SDGs. 

Looking at the average column, IIoT elements contribute to achieve the goals, on average, between 

0.82 and 1.29 scores, which means they have a positive influence, to some extent, lies between mild 

weak to mild strong influences. They enable other technologies to contribute on achieving the goals. 

For example, general identification (E1.1) and ubiquitous sensing (E1.2) enable AI applications to 

improve farming activities, especially animal and fish farming, and so reduce hunger (SDG2). The 

animals are tracked and monitored to gather data that enable taking effective decisions to increase 

food productivity, and quality, improving animals’ health, as well as taking proactive decisions when 

diseases are identified at early stages.  

SOA (E1.5) and semantics communication (E1.6) have the highest and the lowest influences, 

respectively, at average scores of 1.29 and 0.8. Services collaboration of SOA contributes significantly 

to improve human health and well-being (SDG3), industry (SDG9), and sustainable and smart cities 

(SDG1). In industry, for example, services collaboration allows manufacturers to produce products 

without the need to have all the equipment in their shop floor, where some functionalities can be 

accessed by using suitable services offered in the IIoT. SOA initiates synergies between components 

of the industrial sector, similarly in the health sector and smart cities. In the other hand, the influence 

of semantics communication (E1.6) on the goals is indirect, where it stimulates and strengthens the 

influence of other elements including seamless and real-time communication (E1.3), embedded and 

edge computation (E1.4), and SOA (E1.5). The interoperable semantics communication is the hidden 

spine of the IIoT that provides structural support and connectivity to other I4.0 technological 

elements.  

Looking at the average scores shown in the last row, the overall effect of IIoT element technologies 

noticeably vary between goals. The industry, innovation, and infrastructure (SDG9) and the 

sustainable cities and communities (SDG11) gain the most benefits from these technologies as it can 

be noticed from the average scores of 2.57 and 2.05, respectively. This effect is expected as the focus 

of IIoT in fostering the industrial sector and stepping forwards the realization of smart and sustainable 

cites. In contrast, the IIoT elements do not have a significant influence on reducing the gender equality 

(SDG5) and income inequality (SDG10). In fact, IIoT offers many potentials that can consequently 

improve the living conditions sustainably, but the key issue is the way these technologies are used and 

integrated. 
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E2.  Big Data and Analytics 

The influence of BD and analytics (E2) on the sustainability goals is presented in Figure 7, which shows 

the average scores of the BD and analytics elements provided by the seven groups. From the figure, 

in all cases, the technology has positive influences. Moreover, the overall influence is the highest 

between all the I4.0 enabling technologies (cf. Figure 7). The most influencing element is “Decision-

making support” (E2.7). This is because decision-making technologies can be used in processes that 

help to reach any of the sustainability goals. Although, modern technologies are most often used to 

achieve sustainable industry, innovation, and infrastructure goal (SDG9). For example, sensors (E2.1) 

are used to collect data concerning energy consumption by machines, temperature of working 

engines, vibration of working equipment, condition of equipment construction elements, etc. (Vališ 

and Mazurkiewicz 2018; Zabiński et al. 2015). The collected data is analyzed to identify the anomalies 

that can lead to failures, threaten the health and life of employees, cause additional costs or ecological 

disasters.  

 
Figure 7. Average scores of the effect of big data and analytics elements on the UN-SDGs. 

The least influencing element on SDGs is “Data querying” (1.24) as the querying process alone cannot 

make significant change for example for reduced inequality (SDG10) although, wrongly performed 

process can influence on further made decisions. It was assessed that the goal most influenced by BD 

and analytics is the SDG9: industry, innovation, and infrastructure (2.32). Moreover, apart from “Data 

querying” (1.86) all other enablers received the scores higher than 2 for the SDG9.  

BD and analytics also contributes to achieve zero hunger and clean water and sanitation (SDG2 and 

SDG6). Sensors can be used, for example, to monitor crops or to monitor water quality and to identify 

hazards (Bazargan-Lari 2014). The collected data can be used for analyzing the existing situation to 

identify regions with risk and predict future trends. Situations include water contamination or water 

level. 

Technologies supporting decision-making process are also very important to achieve good health and 

well-being (SDG3). With the use of sensors that are embedded in different devices (i.e., Holter), human 

health can be monitored, providing vital signs such as the pulse. Such helpful functions are provided 

in small and common devices (i.e., smart watches). Gathering such data enable monitoring and 

predicting trends of human health in societies. In addition, availability of individuals’ health date 
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enables physicians to diagnose diseases at early stages more accurately and track and monitor drugs 

effect, which speeds up the disease recovery time and drugs improvements (Dyczkowski et al. 2018). 

The experts believe that the impact of BD and analytics on gender equality (SDG5) and reduced 

inequality (SDG10) goals is less than the other SDGs. The score in both cases is 0.82. Especially, when 

we are talking about sensors application, it is worth to emphasize that equality cannot be simply 

measured with the use of sensors and, moreover, the data can be collected with the use of other 

means. Generally, it can be concluded that BD and analytics is very important for sustainable 

development, which is also presented in other publications (Belhadi et al. 2020). In addition, the 

implementation of its technology elements can lead to better understanding of the current situation 

and support identification of activities, which effectively and efficiently allows to achieve the SDGs. 

E3.  Cloud Computing 

The mapping results of the cloud computing technologies (E3) to the SDGs are shown in Figure 8, 

which shows the average scores of the cloud computing elements provided by the seven groups. It is 

noticeable that among all SDGs, the impact is very high in building resilient infrastructure, promote 

inclusive and sustainable industrialization and foster innovation (SDG9). It is a common understanding 

that cloud technology provides accessible and sustainable computing (E3.1) resources for a wide 

distribution of the users over the network. It thus offers a strong ICT support for the infrastructure 

development of industrialization and innovation, especially for the developing areas and small-and-

medium enterprises. The cloud stakeholders do not need to heavily invest on the fundamental ICT 

facilities, while the computing resources in need can be hired from the cloud resource pool, which has 

a positive impact on the business in both developed and non-developed countries. 

 
Figure 8. Average scores of the effect of cloud computing elements on the UN-SDGs. 

From the interoperability’s perspective (E3.2), the cloud system also provides strong support to 

guarantee that the heterogeneous components and technology modules in a complex I4.0 

infrastructure can communicate and interact with each other smoothly. The cloud functions are 

integrated and servicelised in the same cloud structure under pre-defined protocols and interfaces 

when they are added to the cloud (E3.3). Hence, it guarantees the interoperability and accessibility of 

these functionalities and resources. Moreover, the technology extending cloud concept to the 

manufacturing domain (E3.4) is identified as the top impact to the affordable and clean anergy (SDG7), 

as the CC provides physical manufacturing services in the cloud as well. The manufacturing hardware 

and facilities are normally expensive, and, in many cases, the essential equipment must be invested 

but not frequently used. In the CC context, the missing manufacturing resource can be temporarily 

hired from the cloud, while the overall sustainability of the infrastructure development is achievable. 
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From the bigger scale, the CC contributes to high energy efficiency and sustainability (SDG7) via global 

scheduling and optimization. 

In addition, the impact of cloud computing technology is also identified on the sustainable cities and 

communities (SDG11). They make cities and human settlements inclusive, safe, resilient, and 

sustainable. In the I4.0 context, smart devices, monitors, cameras are needed in all places in the smart 

cities, as well as in human settlements. Thus, strong computing power is needed to support the huge 

amount of data and requests. Interoperability (E3.2) is especially important as the smart cities deploy 

more kinds of devices and data than industrial applications. Eventually, the cloud offers different types 

of services to process the data and request submitted from the smart cities and deliver the results in 

terms of scalable services (E3.3). It offers the fundamental knowledge and information structure for 

the development of sustainable cities and communities. 

E4.  Simulation 

The team of experts believe that overall impact of simulation enabler (E4) on SDGs achievement is 

positive as shown in Figure 9, which shows the average scores of the simulation elements provided by 

the seven groups. The aggregated value of the impact is 0.82 and is slightly lower than the arithmetic 

mean for all Industry 4.0 enablers, which is 0.91. This assessment shares a wide consensus by the 

experts as shown by the low SD of 0.72 (c.f. Figure 9), which is the second lowest SD among all I4.0 

enablers after AM (E6). 

 
Figure 9. Average scores of the effect of simulation elements on the UN-SDGs. 

Figure 9 shows the result of mapping the effects of simulation technology elements (E4.1–E4.3) into 

the SDGs. Average results indicate positive to moderate positive effects. Figure 9 shows that 

simulation has the greatest impact towards the achievement of SDG9: build resilient infrastructure, 

promote inclusive and sustainable industrialization, and foster innovation. The reason for such a high 

assessment is widely justified in the literature through the applications of simulation methods to the 

validation of new products and processes (Mourtzis, Doukas, and Bernidaki 2014), workstations and 

manufacturing lines modeling and analysis (Antonelli, Litwin, and Stadnicka 2018), supply chains 

analysis (Jakieła, Litwin, and Olech 2012) and better understanding of the dynamics of business 

systems (Rodič 2017). 

Experts also highly rated the impact of simulation on SDG12: ensure sustainable consumption and 

production patterns and SDG8: promote sustained, inclusive, and sustainable economic growth, full 

and productive employment and decent work for all at score values around 1.9 and 1.81, respectively. 

This is probably since both goals relate to productive employment and sustainable production 

patterns, which are often analyzed and improved by means of simulation methods. In contrast, the 

lowest impact of simulation is agreed to be on SDG16: promote peaceful and inclusive societies for 
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sustainable development, provide access to justice for all and build effective, accountable, and 

inclusive institutions at all levels at score value of 0.05. This is because the goal does not refer to 

industry but focuses on building legal solutions to ensure sustainable development at national and 

international level. The influences of achieving gender equality and empowering all women and girls 

(SDG5) and strengthen the means of implementation and revitalize the global partnership for 

sustainable development (SDG17) have gained the same scores at 0.14. 

The last column of Figure 9 shows that the overall influence of the three elements technology of 

simulations (E4.1–E4.3) is mild positive on all the SDGs ranged between 0.76–0.89. In summary, it can 

be stated that experts indicate a significant positive impact of simulation on those sustainable 

development goals that are related to I4.0 and its impact on environment (employment, consumption, 

use of natural resources). 

E5.  Augmented Reality 

Figure 10 shows the average scores of the AR elements provided by the seven groups. As shown in 

Figure 10, the overall influence of AR (E5) is quite related to the goals that need innovation in 

communication by the senses of sight and hearing, which are the core and key channels of VR. In fact, 

for this reason, it is understandable why E5.2–E5.4 technology elements have an average score higher 

than E5.1 and E5.5. 

 
Figure 10. Average scores of the effect of augmented reality elements on the UN-SDGs. 

Therefore, focusing on the SDGs, the higher impact of this enabler is related to industrial, innovation, 

and infrastructure sectors (SDG9), as well as quality education (SDG4) in which an immersive real time 

simulation in a collaborative CPS boosts the productivity and the engagement of the users (Gorecky 

et al. 2014). Other interesting outcomes emerged from economical (SDG8) and health (SDG3) 

frameworks reinforce the use of AR for enhancing the productivity and the ability of the workers as 

well as the mental workload (remote assisting and communication). 

However, we argue that the remaining lower marks for the SDGs are due to a not completely direct 

influence of this technology. In fact, the fundamentals technology elements of AR allow the users to 

increase and improve his or her communication (E5.4) and collaboration (E5.2) skills, and this can 

certainly have an indirect influence on all the SDGs. For example, a documentary with AR on marine 

life can increase awareness of the care of life in the oceans (SDG14), a guided tour in AR of a wind or 

solar plant can help understand the importance of renewable energy (SDG7), or an installation in the 

public space that uses augmented reality to evoke empathy and build sustainable behavior among 

people regarding climate change (SDG13). Considering these aspects, we believe that AR can be used 
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as a big tool either from an economical perspective both to communicate and raise awareness on 

urgent environmental aspects that affect our planet. 

E6.  Additive Manufacturing 

The aggregate mapping of AM on SDGs displays a slightly positive impact of this technology on the 

achievement of the 2030 Agenda (Figure 11). AM got an overall average score of 0.54, which is the 

lowest among all the I4.0 enablers. This statement shares a wide consensus among the expert panel 

as shown by the low standard deviation results in Figure 11. Furthermore, looking at the disaggregated 

results of Figure 11, which shows the average scores of the AM elements provided by the seven 

groups, it is apparent that the low impact on SDGs regards all the technology elements of the AM, 

either the ones referring to the production technology or the ones concerned with product design 

methodology.  

Nevertheless, considering the specific goals, it is possible to verify that AM has high impact on the 

SDG9: build resilient infrastructure, promote inclusive and sustainable industrialization and foster 

innovation. The average impact of all the AM technology elements on SDG9 is 2.62, indicating a strong 

positive influence. This result was expected, as AM will transform some old and disadvantageous 

manufacturing paradigms, allowing small factories in less favored areas of the world to be established, 

with limited resources and few infrastructures to produce complex and innovative products releasing 

from strict supply-chain requirements. It will be even possible to produce parts by cloud 

manufacturing, with lower concerns about where the production facility is and its adequacy to cope 

with an ever-changing demand.  

 
Figure 11. Average scores of the effect of additive manufacturing elements on the UN-SDGs. 

It is important to point out that AM is a disruptive technology. Therefore, its impact on SDGs is not an 

automatic outcome of the additively manufactured products but requires a consistent effort to shift 

from present production and supplying practices to new ways of designing mass-customized products, 

supplying raw and semi-finished materials, and manufacturing them (Minetola, Priarone, and Ingarao 

2020). AM will be more likely for traditional manufacturing. The physical supports to production such 

as tools, fixtures, and dies will become redundant. 

A recent occurrence of the impact of AM on SDG9 happened during the COVID-19-related crisis, in 

which several supply chains of essential medical devices have been interrupted, depriving some 

nations of fundamental tools to control the epidemic. Several factories had to reorganize their 
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production to make these tools available (Pearce 2020), and AM provided them with the required 

flexibility (Karabag 2020). 

E7.  Horizontal and Vertical System Integration 

Figure 12 depicts the overall impact of Horizontal and Vertical System Integration (HVSI) enabler (E7), 

which shows the average scores of its seven elements provided by the seven groups. As shown in the 

figure, the team of experts concluded that the technology elements of this enabler (E7.1–E7.7) have 

positive influences. The experts believe E7 is a base ground for the other eight I4.0 enablers, which 

can be deduced from intermediate influences of score values around a positive one for most of the E7 

elements. These opinions shared a good consensus among the experts, which can be concluded from 

the average SD of 0.89 (cf. Figure 5).  

Looking to the effects of individual elements, shown in the last column of Figure 12, it is clear that CNs 

element (E7.7) is believed to have the highest influence among the E7 elements at 1.27 score. This 

result is justified in the literature from the importance of CNs to enable the realization of the I4.0 and 

achieve sustainability, especially in industry and innovation (SDG9) (Mezgár 2019), partnership and 

collaboration (SDG17) (Benaben et al. 2015), reasonable production and consumption (SDG12), and 

reduce extreme hunger and malnutrition (SDG2) (Chavarría-Barrientos et al. 2015). System integration 

(E7.3), DT (E7.4), CPS (E7.6), and CPSs (E7.7) are followed at average scores values of 1, 0.91, 1.01, and 

0.8, respectively. The experts believe that these four digital elements have a strong positive influence 

at scores around 3 and 2. This believe is shared undoubtedly among the experts for sustainable 

industry and innovation (SDGG9), and reasonable production and consumption (SDGG12). In contrast, 

the two reference related architecture elements (E7.1 and E7.2) are believed to have mild week 

influences at around 0.5. This is justified by the fact that architecture is a base ground of other I4.0 

technological elements, including elements that have an indirect influence on the SDGs. 

 
Figure 12. Average scores of the effect of horizontal and vertical system integration elements on the 

UN-SDGs. 

The effect of HVSI enabler (E7) on the UN-SDGs varied substantially from strong direct, and weak into 

very weak positive influences, as can be seen from the last row of Figure 12. The average impact on 

industry, innovation, and infrastructure (SDG9) has a 2.67 score, which indicates that almost all the 

elements of E7 have a strong positive influence to foster the industry and promote innovation 

environment. This result is not surprising, as the core objective of the I4.0 vision is to deploy existing 
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technology and stimulate more advancements to improve the industrial sector (Liu and Xu 2017). HVSI 

enabler is also believed to have a mild positive impact on reasonable production and consumption 

(SDG12). This can be justified from the focus of the research on HVSI, enabling the development of 

technologies towards eco-friendly production and sustainable energy consumption (Chavarría-

Barrientos et al. 2015). The experts believe that HVSI has also mild positive impact, at around 1.3 

score, on enhancing descent work and economic growth (SDG8) and sustainable cities and 

communities (SDG11). In contrast, the impact of HVSI on goals related to gender equality (SDG5) and 

social equality (SDG10) are believed to be limited.  

E8.  Autonomous Robots 

The results mapping the ARs elements (E8.1–E8.3) into the sustainability goals are pictured in Figure 

13, which shows the average scores of the ARs elements provided by the seven groups. The prevailing 

green color variants indicate the positive effect of the three ARs elements on the SDGs.  

 
Figure 13. Average scores of the effect of autonomous robot elements on the UN-SDGs. 

Average scores for the ARs elements (last column in Figure 13) indicate indirect positive influence, 

with the autonomy element (E8.3) having the lowest and deliberation element (E8.2) the highest 

influence. Average scores for each SDG (last row in Figure 13) vary substantially and range from −0.1 

for reduced inequality (SDG10) to 2.38 for industry, innovation, and infrastructure (SDG9). The 

strongest positive influence on SDG9 is expected since ARs enabler contributes to the development of 

quality, reliable, sustainable resilient infrastructure, and to sustainable industrialization, as well as 

enhance scientific research, which are all targets provided by the Inter-Agency and Expert Group on 

SDG Indicators (IAEG-SDGs) (UN Statistical Commission 2017). The second strongest positive effect is 

on good health and well-being (SDG3) due to the potential use of ARs in assisting elderly or ill people 

by monitoring their health, as well as in various clinical settings (e.g., surgeries). It is to be noted that 

when it comes to the ARs in broadest possible sense, autonomous weapons (Future of Life Institute 

2015) can negatively affect not only SDG3 but also other SDGs. The ARs has a negative effect on SDG10, 

which is mainly due to the possible outsourcing of human duties (often the less paid ones) to the ARs.  

The effect of the ARs elements is agreed to be less substantial on peace and justice strong institutions 

(SDG16) and partnerships for the goals (SDG17) SDGs. This can be explained by potential use of ARs 

for mentioned autonomous weapons and potential human rights violation (Khamis et al. 2019a). The 

insignificant effect is also observed on no poverty (SDG1) and on clean water and sanitation (SDG6). 

The former effect is due to the potential negative effect of ARs on the employment rate especially in 

poor countries and on the overproduction and underemployment problem, while in the case of SDG6 

one could argue that producing a robot also influences the environment. On the other hand, ARs, 
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when operating, can be programmed in a way to lessen the ecological footprint. So, the overall effect 

could be balanced. 

In comparison to the results of the mapping of other enablers to the SDGs, ARs enabler is not the key 

one when it comes to fulfilling the SDGs. This might be due to the above reasoning, as well as due to 

the fact that with an increasing number of ARs implemented in our everyday lives the chance of them 

to malfunction or getting hacked (Russell, Dewey, and Tegmark 2015) is increasing. This can, of course, 

negatively impact all SDGs. 

E9.  Cybersecurity 

The results mapping the Cybersecurity technology elements (E9.1–E9.2) into the sustainability goals 

is depicted in Figure 14, which shows the average scores of the Cybersecurity elements provided by 

the seven groups. Like most of the other enablers, the results indicate an overall positive effect of 

these elements on SDGs. 

 
Figure 14. Average scores of the effect of cybersecurity elements on the UN-SDGs. 

Average scores for the Cybersecurity elements (last column in Figure 14) indicate indirect positive 

influence, with both elements having a similar influence. Average scores for each SDG (last row in 

Figure 14) range from 0.14 for gender equality (SDG5) and reduced inequality (SDG10) to 1.86 for 

industry, innovation, and infrastructure (SDG9), and sustainable cities and communities (SDG11). The 

strong influence on SDG9 is due to the contribution of the elements E9.1–E9.2 to quality, reliable, 

sustainable, and resilient infrastructure, and to the increase in access to information and 

communications technology. The strong influence on SDG11 is related to the concept of smart city, 

which mainly emphasizes issues related to sustainable transport system, sustainable urbanization, 

reduction in the adverse per capita environmental impact of the cities, and universal access to green 

and public spaces for all citizens. The lowest effect of Cybersecurity is on SDG5 and SDG10, which is 

most likely due to the existing gender bias in cybersecurity (Peacock and Irons 2017). However, 

unequal access to cybersecurity tools increases the social, economic, and political inequalities, so this 

result is rather controversial for SDG10. Last, results show that average scores higher than or equal to 

one are achieved in SDGs that directly cover social aspect of sustainability (except for SDG9). 

Cybersecurity has the second lowest score in comparison to the other enablers, which is due to its 

markedly indirect effect on the SDGs. In addition, part of this result might be due to the slight 

underestimation of the importance of this enabler. Such a case is not only within the research and 

pedagogic community, but also within the larger part of the society. This was confirmed during the 

ongoing coronavirus pandemic, which resulted in a wave of cyber-attacks, due to many people 

working and studying remotely while not being equipped with enough knowledge and resource to 

tackle these attacks (Ahmad 2020). 
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C. Results summary and conclusions 

(a) Result Summary 

This section summarizes the result of the mapping and interprets the main lessons learned from the 

intellectual output 1. The first lesson learned is depicted in Figure 15, which pictures the overall 

influence of I4.0 technologies on the 17 SDGs. The average normalized scores of the mapping are used 

to draw the graph. The graph shows significant differences of the influences on the 17 goals, ranged 

from very strong influence at around 0.9 for SDG9 to very weak influence at around 0.1 for SDG10. To 

interpret the result, the 17 goals can be grouped, based on the gained normalized scores, into four 

groups: high, middle, and low influenced goals at normalized scores of above 0.5, between 0.5 and 

0.3, and below 0.3, respectively.  

SDG9: sustainable industry and innovation is the only goal in the high influenced category, which is 

the core focus of the I4.0. In the middle-influenced category, there are six goals: SDG3, SDG11, SDG12, 

SDG8, SDG7, and SDG4. However, these goals are focused on fields that are strongly related to the 

industry either by using industry output as their inputs (i.e., using manufactured equipment in health 

sector) or vice versa (i.e., the output of education supply the industry workforce). On the other hand, 

the remaining 10 goals in the lowest influenced group focus on thematic issues that do not have direct 

relations to the industry (i.e., justice, poverty, and hunger). The realization of I4.0 is promising to 

towards the achievements of the 7 goals that lays within the first and second categories. However, it 

is not expected to have substantial influences on the remaining goals. 
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Figure 15. Overall SDGs influences by I4.0 technologies. 

The second lesson is learned from the expected contribution of I4.0 enabling technologies toward the 

achievement of the UN 2030 Agenda. The radar graph in Figure 16 outlines the expected influences of 

the nine enablers of I4.0. Normalized scores of the average mapping are used to draw this graph. E2: 

Big Data and Analytics enabler is believed to have the highest contribution and E6: Additive 

Manufacturing the lowest. The highest influence of the E2: Big Data and Analytics driven by the fact 

that it is applied in almost all the human aspects, from economy and social life to the environment. In 
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contrast, E6: Additive Manufacturing contribution is confined to part of the economy, namely on 

industry and infrastructure. This is also noticeable from the remaining five enablers, where the scope 

of application is larger for technologies gained the highest scores (i.e., IIoT) and smaller for those 

gained quit lower scores (i.e., ARs). To achieve the sustainable agenda, more focus should be directed 

towards technologies that are applicable in wider fields.  
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E5. Augmented Reality
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Figure 16. Overall I4.0 enablers influences on SDGs. 

The third lesson is about the contribution of I4.0 element technologies towards the sustainability. 

Figure 17 represents the elements that have average score above 1. Around 43% of the elements (19 

out of 44) gained these high scores. These promising elements are mainly focused on five areas: 

decision making, data collection, processing and usage, communication, systems integrations, and 

human-machine collaboration. The summarize lesson from this figure is that the key success of I4.0 

towards the goals’ achievement is the wide implementation of intelligent decision making (decision-

making based on data) and exploit the ability of both human and machines, which could not be 

realized without human-machine collaboration, effective organization cooperation and efficient 

communication.  
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Figure 17. Highest influencing I4.0 element technologies on the SDGs. 

(b)  Conclusions 

The report presents the first formative attempt to investigate the sustainable influence of the I4.0 

technologies in accordant with the 2030 Agenda of the United Nation. The report contributes to a 

deeper perception of the fourth industrial revolution by identifying and defining 44 technology 

elements, as well as classifying these enabling elements into nine main categories. The influences of 

these heterogeneous elements are quantitatively mapped to the 17 sustainable development goals, 

consolidating the understanding of the relation between I4.0 and the SDGs.  

This report shows that I4.0 is enabled by a variety of technologies, which are known decades before 

the emerge of I4.0 vision, but the new in this area is how these technologies are being developed and 

applied in more intelligent, ubiquitous, and collaborative manners. Even though there are 

advancements in all the I4.0 technologies, there are still many challenges standing as barriers on the 

realization of the whole vision. Tremendous ongoing research efforts are trying to overcome these 

challenges.  

The mapping shows that I4.0 technologies have a prominent influence toward the achievements of 

the SDGs. The expert’s panels believe that the influence varies between technologies and on different 

SDGs. The experts strongly believe that from the 17 goals SDG9: industry, innovation, and 

infrastructure, is the most influenced goal by I4.0 technologies. Additionally, a consensus has been 

reached that E2: Big Data and Analytics enabler has the highest contribution toward the achievement 

of the SDGs. This is driven by the fact that data-based technologies are widely applied in different 

fields from industry, education, and economy into social life, health, and the environment. Generally, 

the mapping showed that the majority of the I4.0 technologies are positively influencing the 2030 

Agenda, and only very few elements are expected to negatively influence goals related to reducing 

inequality (SDG10). For such negative effect, the experts believe that the technology should be geared 

to comply with the SDGs, which can be achieved by initiating policies to turn the influences from 

negative into positive. Automation tax is an example of such an effective policy (Zhang 2019). 

This work opens several further research opportunities. It is worth to study the influence of I4.0 

technologies on individual goals, particularly goals that did not share wide consensus among the 

experts, which have standard deviation values greater than one. It is worth to investigate the reasons 

0 0.5 1 1.5 2 2.5

E2.7. Decision-making support

E2.3. Data processing

E2.2. Data collecting

E2.6. Data analytics

E2.8. Data management techniques/ methods

E2.5. Data access

E1.5. Services Oriented Architecture (SOA)

E7.7 Collaborative Networks

E2.1. Sensors

E2.4. Data querying

E1.4. Embedded & Edge Computation

E5.2. Human interaction

E5.3. AR Training

E1.3. Seamless & high speed Communication

E1.2. Ubiquitous Sensing

E5.4. AR Communication

E1.1. General Identification

E7.6. CPS

E7.3. Systems Integration



MAESTRO  
 Manufacturing Education for a Sustainable  

fourth Industrial Revolution  
 
                                          

Project No 2019-1-SE01-KA203-060572 

- 37 - 

of the controversy mapping and discover whether it is caused by lack of explicitly in defining the SDGs, 

targets, or indicators, or by the ambiguity of the foreseeable influence of the technology.  

Another direction is to extend this study by involving more experts from the academia and beyond. 

As this work is carried out by seven experts’ groups from seven institutions in six European countries, 

it is worth to extend the study to wider experts’ panels. This could be achieved by increasing number 

of experts, including more institutions and investigate it in other countries in Europe and overseas. In 

addition, as this work focuses on the academic view, it would be worth to conduct the mapping from 

the perspective of experts from industry, the economy as well as form human rights and 

environmental protection. Investigating the influence from different perspectives provides a complete 

picture and should help policymakers to initiate policies and actions that consider and compromise 

different views. 
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