
RZESZOW UNIVERSITY OF TECHNOLOGY

FACULTY OF MECHANICAL ENGINEERING AND AERONAUTICS

DEPARTMENT OF COMPUTER SCIENCE

DECISION SUPPORT SYSTEMS

LEARNING MATERIALS

PART 1

Time series in machine learning:
time series clustering

The European Commission's support for the production of this publication does not constitute 
an endorsement of the contents, which reflect the views only of the authors, and the 
Commission cannot be held responsible for any use which may be made of the information 
contained therein.

COURSE INDUSTRIAL ENGINEERING

GROUP I MP-DU

Developed by: Łukasz Paśko

2021/2022



This publication is licensed under a Creative Commons Attribution-NonCommercial 4.0

International Public License (CC BY-NC 4.0).

Table of contents

Table of contents 2

Introduction 3

Objectives of the classes 3

The example used in classes 3

Course of the task 4

1 Data import 4

2 Familiarization with the data 4

3 Data preprocessing 5

3.1 Time series smoothing 5

3.2 Normalization 6

3.3 Handling of missing observations 6

4 Search for outliers (atypical) customers 7

4.1 Principal Components Analysis 7

4.2 DBSCAN algorithm 7

5 Hierarchical clustering 8

5.1 Calculation of distances between each pair of customers 8

5.2 Creating a hierarchy of clusters 8

5.3 Verification of the cluster hierarchy 8

5.4 Defining the clusters 9

5.5 Examination of the obtained clusters 9

Student assignments 11

2

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode


Introduction

Objectives of the classes
● Presentation of the concept of time series clustering using machine learning techniques.

● Preprocessing of time series data.

● Application of hierarchical methods.

Time series - a sequence of data (observations) that are ordered (the order of the data is important).

Clustering (grouping, patternless classification) - the task of finding clusters, also called clusters or

groups, in a set of natural objects.

Time series clustering is an important task because:

● Facilitates the discovery of patterns present in the data - generating clusters for a certain set

of data makes it easier to understand the structure of the data, allows you to more easily spot

anomalies or other types of patterns present in the time series,

● Makes it easier to review large amounts of data - datasets containing time series can be huge

(especially nowadays), making it difficult for an analyst to review such a large amount of data,

● Clustering is the most commonly used exploratory technique - it is part of the more complex

tasks of:

o Discovering rules (patterns) in time series,

o Classification of time series,

o Detection of anomalies in time series.

The example used in classes
Clustering of bank customers

We have data on the values of bank account balances of 5869 customers of a certain bank. These are

the values in thousands of USD recorded at the end of the month. The data are for 4 years (48

months).

The account balance data of a single customer is a time series (each customer is one time series).

The task is to find groups made up of similar customers (similar in terms of their account balance in

consecutive months), so we are looking for groups of similar time series.

Customer clustering (dividing customers into groups) is important for various industries and

institutions. It is used, among others, in banking, where customer clustering improves, for example

marketing campaigns or risk management.

3



Course of the task

1 Data import
Load the file customers_clustering.csv using the import wizard: Home 🡪 Import Data.

In the "Range" field enter A2:HQS49 (data range), in the "Output Type" field select "Numeric Matrix".

Push the "Import Selection" button, select "Import Data".

2 Familiarization with the data
Check the number of rows and columns of the loaded file.

[rows, cols] = size(customersclustering)

Draw time series graphs for a few selected customers.

hold on

for i=1:3

plot(customersclustering(:,i))

end

hold off

Calculate the average account balance for the first ten customers.

4



mean(customersclustering(:,1:10))

Check the maximum and minimum average among all customers.

max(mean(customersclustering))

min(mean(customersclustering))

Check for missing observations in the data.

missing_test = ismissing(customersclustering);

sum(sum(missing_test))

Check if there are NaN (not a number) observations in the data.

nan_test = isnan(customersclustering);

sum(sum(nan_test))

3 Data preprocessing

3.1 Time series smoothing
On the time series of the first client, test the smoothing using the spline functions. Note - you can

control the degree of smoothing by adding an option to the following command:

'SmoothingParam', p where p is the parameter controlling the smoothing. Default value of “p” is

0.9.

[f,goodness,output] = fit((1:rows)', customersclustering(:,1),...

'smoothingspline') % smoothing of the first series

plot(1:rows, customersclustering(:,1), 'r-', 1:rows, f(1:rows), 'b:')

% comparison of the original and smoothed series

plot(f, 1:rows, customersclustering(:,1), 'residuals' ) % residuals graph

xlabel('Month')

ylabel('Residuals')

Smooth out all time series using spline functions.

smoothedData=zeros(48,5869);

for i=1:cols % for all the columns (customers)

f = fit((1:rows)', customersclustering(:,i), 'smoothingspline');

smoothedData(:,i) = f(1:rows);

end

Check the smoothing effect for the last customer.

plot(1:rows, customersclustering(:,cols), 'r-', ...

1:rows, smoothedData(:,cols), 'b:')

5



3.2 Normalization
Transform the data so that in each time series the maximum value is 1 and the minimum is 0.

Formula: , where x* is the data after normalization, and x is the data before

normalization.

normalizedData=smoothedData;

for i=1:cols

normalizedData(:,i)=(smoothedData(:,i)-...

min(smoothedData(:,i)))/(max(smoothedData(:,i))-...

min(smoothedData(:,i)));

end

Check the effect of normalization for the first three time series, showing them on a single, common

graph.

plot(normalizedData(:,1),'r-')

hold on

plot(normalizedData(:,2),'g-')

plot(normalizedData(:,3),'b-')

hold off

3.3 Handling of missing observations
Check for missing observations in the dataset after smoothing and normalization.

sum(sum(ismissing(normalizedData)))

Find out how many customers have missing data.

missing_customers=sum(ismissing(normalizedData));

sum(missing_customers~=0)

Find customers with missing data.

missing_numbers = find(missing_customers==48)

Draw a graph of normalized data for one of the customers found.

plot(normalizedData(:,1403))

Remove customers with missing data.

cleanedData = normalizedData;

cleanedData(:, missing_numbers) = [];

6



4 Search for outliers (atypical) customers

4.1 Principal Components Analysis
Use the principal component analysis to find the main components for the analyzed data. Note -

methods used from this point on require setting customers in rows rather than columns of the matrix.

data = cleanedData';

[rows, cols] = size(data)

[coef, score, latent] = pca(data);

Draw a graph showing how much information each of the components found contains (known as a

scree plot).

plot(latent,'r-*')

Present all customers on a plane of two main components.

plot(score(:,1), score(:,2), 'o')

xlabel('1st principal component')

ylabel('2nd principal component')

4.2 DBSCAN algorithm
Points located in the low-density area are atypical customers. Use the DBSCAN algorithm to separate

atypical customers from the rest. Before you run the DBSCAN algorithm, set its two key parameters:

minpts and epsilon. Assume that the minpts parameter is to be at least d+1, where d is the length of

the time series. In turn, to determine epsilon, use a graph showing the sorted Euclidean distances

calculated for the two principal components from the score matrix.

minpts=50;

kD = pdist2(score(:,1:2),score(:,1:2),'euc','Smallest',minpts);

plot(sort(kD(end,:)));

grid

Using the graph created, take as epsilon the value from the vertical axis, from which the rapid

increase of values begins.

epsilon=0.35;

Run the DBSCAN algorithm with the minpts and epsilon parameters fixed. The algorithm should

assign each customer to one of two classes.

labels = dbscan(score(:,1:2), epsilon, minpts);

Present all customers on a plane of two main components with the two predetermined classes

highlighted.

gscatter(score(:,1), score(:,2), labels);

7



Customers belonging to class -1 are outlier observations that should be discarded. Keep only

customers with a label of 1.

non_outlier_data = data(labels==1,:);

Check how many customers remain after removing outliers.

[rows, cols] = size(non_outlier_data)

5 Hierarchical clustering

5.1 Calculation of distances between each pair of customers
Calculate the distance between each pair of customers. Use DTW (Dynamic Time Warping) distance,

which is dedicated to time series. The result should be a sequence of numbers denoting the

distances. You should get w*(w-1)/2 numbers, where w is the number of customers.

distances_DTW = zeros(1,rows*(rows-1)/2);

counter=0;

for i=1:(rows-1)

for j=(i+1):rows

counter = counter+1;

distances_DTW(counter) = dtw(non_outlier_data (i,:), ...

non_outlier_data (j,:));

end

end

5.2 Creating a hierarchy of clusters
Based on the calculated DTW distances, determine the cluster hierarchy. Compare the dendrograms

created using different linkage methods: ward, average, single, complete, weighted, median.

Z1 = linkage(distances_DTW, "ward");

dendrogram(Z1,0)

Z2 = linkage(distances_DTW, "average");

dendrogram(Z2,0)

Z3 = linkage(distances_DTW, "single");

dendrogram(Z3,0)

Z4 = linkage(distances_DTW, "complete");

dendrogram(Z4,0)

Z5 = linkage(distances_DTW, "weighted");

dendrogram(Z5,0)

Z6 = linkage(distances_DTW, "median");

dendrogram(Z6,0)

8



5.3 Verification of the cluster hierarchy
Calculate the correlation between the distances calculated with DTW and the distances shown on the

hierarchy tree. The calculated result will work as follows: the closer the value is to 1, the better the

correspondence between DTW distances and distances from the tree.

c1 = cophenet(Z1, distances_DTW)

c2 = cophenet(Z2, distances_DTW)

c3 = cophenet(Z3, distances_DTW)

c4 = cophenet(Z4, distances_DTW)

c5 = cophenet(Z5, distances_DTW)

c6 = cophenet(Z6, distances_DTW)

5.4 Defining the clusters
For the cluster hierarchy obtained by Ward's method, define clusters by dissecting the dendrogram at

the point of the longest branches.

dendrogram(Z1,0,'ColorThreshold',150)

clusters_H = cluster(Z1, "maxclust", 4)

5.5 Examination of the obtained clusters
Check how many customers belong to each of the defined clusters.

quantities = [sum(clusters_H==1),...

sum(clusters_H==2),...

sum(clusters_H==3),...

sum(clusters_H==4)]

Calculate the average balance of customers in each cluster separately. When calculating the average,

assume that account balances from all 48 months will be summed. Note - first, from the

customersclustering matrix, remove the five customers who had missing observations after the

normalization step, and also remove customers treated as atypical customers.

non_outlier_accbalance = customersclustering; % copying the balance data

non_outlier_accbalance(:, missing_numbers) = []; % removal of empty customers

non_outlier_accbalance(:, labels==-1) = []; % removal of outliers

avg_accbalance=[mean(sum(non_outlier_accbalance(:,clusters_H==1))),...

mean(sum(non_outlier_accbalance(:,clusters_H==2))),...

mean(sum(non_outlier_accbalance(:,clusters_H==3))),...

mean(sum(non_outlier_accbalance(:,clusters_H==4))) ]

Calculate the standard deviation of the total customer account balance in each cluster separately.

std_accbalance=[std(sum(non_outlier_accbalance(:,clusters_H==1))),...

std(sum(non_outlier_accbalance(:,clusters_H==2))),...

std(sum(non_outlier_accbalance(:,clusters_H==3))),...

std(sum(non_outlier_accbalance(:,clusters_H==4)))]

9



Draw a graph comparing the determined means and standard deviations in each cluster.

figure

bar([avg_accbalance ; std_accbalance]')

legend('mean','std')

Present the time series totals for each cluster on a single graph. The calculated totals should include

the account balances of all customers belonging to a given cluster.

plot(sum(non_outlier_accbalance(:,clusters_H==1)'))

hold on

plot(sum(non_outlier_accbalance(:,clusters_H==2)'))

plot(sum(non_outlier_accbalance(:,clusters_H==3)'))

plot(sum(non_outlier_accbalance(:,clusters_H==4)'))

hold off

legend('cluster1','cluster2','cluster3','cluster4')

For comparison, show a graph of the total balance of all customers.

plot(sum(non_outlier_accbalance'))

Determine the centroid of each cluster. Assume that the centroid will be the so-called "averaged

object", i.e. a vector whose values are equal to the average value of all objects (customers) in a given

cluster. Note - this is not the average balance, but the average value of normalized data.

centroids(1,:)=mean(non_outlier_data(clusters_H==1,:));

centroids(2,:)=mean(non_outlier_data(clusters_H==2,:));

centroids(3,:)=mean(non_outlier_data(clusters_H==3,:));

centroids(4,:)=mean(non_outlier_data(clusters_H==4,:));

Depict all centroids on one common graph.

plot(centroids(1,:))

hold on

plot(centroids(2,:))

plot(centroids(3,:))

plot(centroids(4,:))

hold off

legend('c1','c2','c3','c4')

Create a separate chart for each defined cluster. On each chart, place the normalized balances of all

customers belonging to that cluster and the centroid determined for that cluster. Mark the centroid

with a bold red line.

plot(1:48,non_outlier_data(clusters_H==1,:), ...

'Color',[.8 .8 .8],'LineWidth',0.1)

hold on

plot(centroids(1,:),'LineWidth',5,'Color','r')

hold off

10



plot(1:48,non_outlier_data(clusters_H==2,:), ...

'Color',[.8 .8 .8],'LineWidth',0.1)

hold on

plot(centroids(2,:),'LineWidth',5,'Color','r')

hold off

plot(1:48,non_outlier_data(clusters_H==3,:), ...

'Color',[.8 .8 .8],'LineWidth',0.1)

hold on

plot(centroids(3,:),'LineWidth',5,'Color','r')

hold off

plot(1:48,non_outlier_data(clusters_H==4,:), ...

'Color',[.8 .8 .8],'LineWidth',0.1)

hold on

plot(centroids(4,:),'LineWidth',5,'Color','r')

hold off

Student assignments
1. Determine the centroid of all outlier customers that the DBSCAN algorithm has assigned to

class -1.

2. Create a graph to show the centroids of each cluster together with the centroid of the outlier

customers.

3. For each cluster, determine the minimum value from the average balances of all customers

belonging to that cluster. Take the average of all 48 months for a given customer as the

average balance. Then calculate the maximum value from the average balances and the

median of the average balances in the same way.

4. For outlier customers, determine the values referred to in Task 3. Compare the results

obtained with the four clusters studied.

5. Create a graph on which you place the normalized balances of all outlier customers and their

centroid. Mark the centroid with a bold red line.

6. Save the original data on the account balances of the customers who were part of the

clusters you created.

11


